How to Create a New Column with False Values to a DataFrame Using Python
Adding a new column with False
values to a DataFrame is a common task in data manipulation using Python’s pandas library.
In this article, we cover two methods:
- Direct Indexing
- Using the
assign()
Function
Using Direct Indexing
Direct indexing allows you to add a new column by specifying its name and assigning values.
Below is an example of adding a column named New_column
with False
values to a DataFrame:
# Import pandas library
import pandas as pd
# Define DataFrame
df = pd.DataFrame({
'Date': ['01-03-2023', '01-03-2023', '01-03-2023', '01-03-2023', '02-03-2023', '02-03-2023'],
'Product_Code': ['A-101', 'A-102', 'A-103', 'B-101', 'B-102', 'B-104'],
'Product_Name': ['Laptop', 'Mobile', 'Printer', 'Keyboard', 'Scanner', 'Mouse'],
'Price': [4500, 550, 250, 50, 350, 50],
'Status': [1, 1, 1, 0, 1, 1]
})
# Add new column to DataFrame
df["New_column"] = False
# Show updated DataFrame
print(df)
Output: 👇️
Date Product_Code Product_Name Price Status New_column
0 01-03-2023 A-101 Laptop 4500 1 False
1 01-03-2023 A-102 Mobile 550 1 False
2 01-03-2023 A-103 Printer 250 1 False
3 01-03-2023 B-101 Keyboard 50 0 False
4 02-03-2023 B-102 Scanner 350 1 False
5 02-03-2023 B-104 Mouse 50 1 False
In this example, we use direct indexing to add a new column New_column with false values to the dataframe df.
Using assign() Function
The assign()
function is another approach to add columns to a DataFrame. It integrates seamlessly into functional pipelines, making it ideal for chaining operations.
Suppose we have the following dataframe:
Here’s how to use the assign()
function:
# Import pandas library
import pandas as pd
# Define DataFrame
df = pd.DataFrame({
'Date': ['01-03-2023', '01-03-2023', '01-03-2023', '01-03-2023', '02-03-2023', '02-03-2023'],
'Product_Code': ['A-101', 'A-102', 'A-103', 'B-101', 'B-102', 'B-104'],
'Product_Name': ['Laptop', 'Mobile', 'Printer', 'Keyboard', 'Scanner', 'Mouse'],
'Price': [4500, 550, 250, 50, 350, 50],
'Status': [1, 1, 1, 0, 1, 1]
})
# Add new column to DataFrame
df = df.assign(New_column=False)
# Show updated DataFrame
print(df)
Output: 👇️
Date Product_Code Product_Name Price Status new_column
0 01-03-2023 A-101 Laptop 4500 1 False
1 01-03-2023 A-102 Mobile 550 1 False
2 01-03-2023 A-103 Printer 250 1 False
3 01-03-2023 B-101 Keyboard 50 0 False
4 02-03-2023 B-102 Scanner 350 1 False
5 02-03-2023 B-104 Mouse 50 1 False
In this example, we use the assign() function to add a new column new_column with false values to the dataframe df. The output shows the updated dataframe with the new column.
Conclusion
Both direct indexing and the assign() function are effective methods for adding a new column with False
values to a pandas DataFrame.