How to Create Columns Based on Row Values of Dataframe in Python
To create columns based on row values of a dataframe in Python, you can use the apply() function.
The following example shows how to create columns based on row values of a dataframe in Python using the apply() function.
Using apply() Function
We can use the apply() function to create columns based on row values.
Let’s see how to use the apply() function in Python:
# Import pandas library
import pandas as pd
# Create dataframe
df = pd.DataFrame({
'Date': ['01-03-2023', '01-03-2023', '01-03-2023', '01-03-2023', '02-03-2023', '02-03-2023'],
'Product_Code': ['A-101', 'A-102', 'A-103', 'B-101', 'B-102', 'B-104'],
'Product_Name': ['Laptop', 'Mobile', 'Printer', 'Keyboard', 'Scanner', 'Mouse'],
'Price': [4500, 550, 250, 50, 350, 50],
'Status': [1, 1, 1, 0, 1, 1]
})
# Define a function to create the status description
def status_desc(row):
if row['Status'] == 1:
return 'Available'
else:
return 'Out of Stock'
# Apply the function to create the new column
df['Status_Desc'] = df.apply(status_desc, axis=1)
# Show updated dataframe
print(df)
Output: 👇️
Date Product_Code Product_Name Price Status Status_Desc
0 01-03-2023 A-101 Laptop 4500 1 Available
1 01-03-2023 A-102 Mobile 550 1 Available
2 01-03-2023 A-103 Printer 250 1 Available
3 01-03-2023 B-101 Keyboard 50 0 Out of Stock
4 02-03-2023 B-102 Scanner 350 1 Available
5 02-03-2023 B-104 Mouse 50 1 Available
In this example, we use the apply() function to create a new column Status_Desc based on the values in the Status column of the dataframe df.
The output shows the updated dataframe with the new column added.
Conclusion
We can use the apply() function to create columns based on row values of a dataframe in Python.