How to Concatenate Rows of Dataframes in Python
To concatenate rows of a dataframe in Python, you can use the pd.concat() function by specifying axis=0.
The following example shows how to combine dataframe rows in Python.
Using concat() Function
We can use the concat() function to combine rows of dataframes.
Suppose we have the following dataframes:
# Import pandas library
import pandas as pd
# Create two dataframes
df1 = pd.DataFrame({'Product_Code': ['A-101', 'A-102', 'A-103'],
'Product_Name': ['Laptop', 'Mobile', 'Printer'],
'Price': [4500, 550, 250],
'Status': [1, 1, 1]})
df2 = pd.DataFrame({'Product_Code': ['B-101', 'B-102', 'B-104'],
'Product_Name': ['Keyboard', 'Scanner', 'Mouse'],
'Price': [500, 350, 50],
'Status': [1, 1, 1]})
# Combine rows
combined_rows = pd.concat([df1, df2], axis=0)
# Show combined rows
print(combined_rows)
Output: 👇️
Product_Code Product_Name Price Status
0 A-101 Laptop 4500 1
1 A-102 Mobile 550 1
2 A-103 Printer 250 1
0 B-101 Keyboard 500 1
1 B-102 Scanner 350 1
2 B-104 Mouse 50 1
In this example, we use the pd.concat() function to combine the rows of df1 and df2 into a single dataframe combined_rows.
Conclusion
We can use the pd.concat() function by specifying axis=0 to concatenate rows of dataframes in Python. This method provides a convenient way to merge rows from multiple dataframes.